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Linear tensor relationships between the stresses and strain rates in an isotropic 

plastic material contain two independent scalar functions. It is proposed to uti- 

lize two independent limit conditions to determine them: One is formulated in 
stress space (one of the forms of the Coulomb condition), and the other in the 

strain rate space (dilatahcy relationship). Work-hardening is taken into account, 
the problem of the shear strain of a layer of sand is examined, the proposed 
governing equations are discussed comparatively. For simplicity, the analysis 
is restricted to plane motion. 

1. Initlrl rapre8antationl. A medium comprised of solid, slightly elastic 
particles (granules) is examined. Upon the application of loads, the medium is deformed 
so that the strains associated with the relative slippage of the granules play the domin- 

ant part. In this case, dry friction forces subiect to the Coulomb law 

IRI = Ntg6 (1.1) 

act at the contacts between the granules, where N, R are the normal (compressive) 
and tangential components of the forces acting on the slippage surface, and 6 is the 

true angle of dry friction (between the particles). 
Although the velocity field in microscale contains a set of tangential discontinuities 

because of slippage of the granules, let us introduce a continuous field of mean veloci- 
ties Ui (Zj, t). Then the distribution of the relative velocities hut of particles separated 

by a spacing 1 in the neighborhood of the macropoint Xj (taking account of rotation 
of the neighborhood as a rigid whole is not essential to the subsequent analysis) is charac- 
terized by the strain rate tensor Eij, calculated by means of the displacement velocities 

Ui (XI, t) in the customary manner [l] 

Eij = lJ2 (dUi / 8Xj + f3uj / aq (1.2) 
In fact 

AUK = ZL~ (xi + Zj, t) - Ui (Xi, t) = 2 ei_+Zj (1.3) 
i 

These relative displacements are due to the effect of the stresses dir* 

Let us seek the relations oil = f (&if; cp, h, x, . . .) governing the mechanical beha- 

vior of a granular medium during its plastic deformation. Here cp, h, X ... are the un- 
determined parameters of the state of the medium. Seeking the relations between the 

stress oil and strain rate eij tensors corresponds to the methods of incremental plasti- 

city theory [l, 21. 
The starting point for what follows will be an isotropic linear tensor relation between 
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oii and eif, modified for the case of the plane problem 

Eij = 2x’ (oi j + p&j) - 5' (2H + 2p) 6,j (1.4) 

where H is some as yet undetermined quantity with dimension of stress. The relation 
(1.4) includes 13, 41 two independent scalars h’, c’ which are characteristic for a plas- 
tic material. They can be functions of the state parameters, invariants of the tensor 

(Jij and other parameters, including hardening [l], if the effect of hardening is essential. 

Let us consider the functions J,‘, 5’ to be different from zero if two limit conditions 
are satisfied [3, 41, In contrast to [3, 41 let us formulate just one of the conditions for 

the stress tensor components; we form the second for the strain rate tensor components 

c51. 
Let us utilize the flow condition (loading) traditional for the theory of plasticity as 

the first condition 
(Da@, T; cp, c, . ..) = 0 (1.5) 

p=- 7 9 hl + Qzs) 9 T = l/a I%,, - Q2)2 + 441a2 

by considering the parameters 9, C, . . . therein functions of the hardening parameter X. 
The second limit condition is kinematic in nature; let us give it in the form of a rel- 

ationship such as 

CD, (E, 7; A,. . .) = 0 (1 .q 

E = 811 + &a27 7' = v/(e,, - 822)'+ 4E1s21 A = il (X) 

Condition (1.6) means that the increments in volume and shear are interrelated [S] and 
this reflects the effect of dilatancy, made apparent experimentally by Reynolds [7] for 

granular media. 
Now, let us consider the stress plane (the pressure p is laid off along the horizontal, 

and the tangential stress intensity T along the vertical axis). A point on one surface of 

a family of flow surfaces (1.5) will correspond to each plastic state. Let us also plot the 
plastic volume strain e along the horizontal axis, and the plastic shear y along the 

vertical axis. Then the condition (1.6) connects the projections of the vector of the 
plastic strain increments de = edt and dy = y’dt, i.e., determines the orientation of 
the vector dei j at the point under consideration relative to the flow surfaces (1.5). 

It should here be stressed that the surface to which the vector de;j is orthogonal can 
be found from the known condition (1.6) i.e., the plastic potential Y corresponding 
to the selected kinematic condition can be found. The corresponding equipotential 
should not coincide absolutely with the flow surface (1.5). Hence, the kinematic cond- 

ition (1.6) is very much broader than the demand of normality of the vector deij to the 
flow surface, i.e., that particular form of the associative law which is used extensively 
in the theory of plasticity, and in particular in soil mechanics. The kinematic condition 
(1.6) corresponds to the general form of the associative law f2]. 

Upon substitution of (1.4) into the kinematic condition (1.6) the latter is converted 
into 

0, (E$j (3ij)) = as (aij; h'9 5'7 H, = O (1.7) 

which permits expressing 5’ in terms of A’ either directly, or by using the flow condi- 
tion (1.5). In this latter case, the connection between h’ and 5’ as well as the quan- 

tity H are selected from the requirement 
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In the theory of plasticity developed in application to the strain of metals, the re- 
quirement for plastic incompressibility e = 0 has been proposed, which would be one 
of the possible kinematic conditions (1.6). It hence follows at once that f’ G 0. If 
@,=T-- const = 0, then it turns out that the vector deij has just one, nonzero, pro- 

jection dy and is orthogonal to the flow surface p]. 

The factors c’, J,’ were introduced in [3, 41 and two limit conditions were sought to 
determine them, however, in the stress space for both, and this was not successful, It 

was mentioned in [S] that just the factor h‘ turns out to be independent in dilating media 

and plastic strains were introduced, whose volume increments are proportional to the 
shear increments. 

The use of a dilatancy relation (in the e ij space) explicitly to express one of the para- 
meters h’, 5’ in terms of the other was proposed in 15, 93. Attention was turned in [ 10,111 
to the presence of several independent scalar functions in the governing relations for 

soils, but no condition of general type was advanced to supplement the flow condition 

(2.4). On the other hand, a particular form of the dilatancy relation (1.6) was introduced 
[12, 133 but no means has been found to utilize it to decipher the governing relations. 

2, Concretisrtion of the limit conditions. Let us use theCoulomb 
condition as the flow (loading) condition 

(D, = l/r )/(%1 - c&s + 4olla + I/% (all + 6s) sin ‘p - c cos cp = 0 (2.4) 

where cp is the effective angle of internal friction, and c the cohesion, which are func- 

tions of the hardening parameter. The surface (2.1) in p T space is a Mohr-Coulomb 
line whose slope to the p axis equals sin rp. 

The results of known experimental researches on the deformation properties of granular 

media (sand, gravel, etc.) indicate the following. Firstly, there is a domain in the pT 
stress plane adjacent to the pressure axis p in which the medium behaves elastically(or 

at least the reversible part of the strain does not exceed the elastic part). This domain 

is separated from the domain of primarily irreversible strains by the initial flow surface 
QDo = 0. In the majority of the researches it is asserted that this surface (at least, a sig- 

nificant part of it) is a Mohr-Coulomb line (see Sect. 3 below). As regards the nature 
of these large irreversible strains, the mellow sands are compacted to a certain limit 

during shear, which corresponds to the critical state at which the medium becomes 
plastically incompressible. Compact sands, on the other hand, mellow to the critical 
state during shear. The shear strains apparently grow without limit at the critical state, 

i. e. disaggregation occurs. As the medium irreversibly compacts (mellows) the flow 
(loading) surface m. varies so that the point of the corresponding plastic state is always 

on the instantaneous loading surface. 
Let us utilize the dilatancy constraint [5] 

DE = (elt + es,) - A I/(e,, - e,# + 4eall = 0 (2.2) 

as the kinematic limit condition (1.6), where h (x) is the effective rate of dilatancy. 
Let us assume that the hardening parameter X is an irreversible volume strain or density 
(such a substitution is possible in the case of a rigidly plastic model). The hardening 
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will therefore be considered isotropic. 
If conditions (2.1). (2.2) are not satisfied, then the medium is rigid. The rate of 

plastic strain 8ij of a granular medium is not zero, i.e., h’ # 0, 5’ .+ Q, if conditions 

(2.1). (2.2) are satisfied simultaneously, Substitution of the relationship (1.4) into the 
dilatancy relation (2.2) results in 

The requirement that the latter agree with the Coulomb limit condition (2.2) results 
in the dependences 

5’ zz - h’Asin rp, H = c ctg cp (2.3) 

Hence, the governing equations (X.4), being written for the strain increments deij , i. e. , 
in the customary form for a plastically hardening model, become 

~ij = 2(bij _t (1 + h sin@ J&j + CACOS v&j) Cfh (2.41 

The increment of just one additional scalar function dh figures here. As usual, dh = 0 
for a, < 0, and also for neutral loading: dh ;Y, 0 for active loading. The concepts of 
neutral and active loadings in the domain of the plastic states (@, = @will be illustrated 
by a specific example below. 

The effective dependences h (p f p*) and cp fp I p.+. should be chosen from test re- 

sults. Here p is the running value of the density, p* is the density of the reference state. 
If A =I 0 for p = &, then p* can be called the critical density. In conformity with 

the above, we shall call sands mellow at the beginning of this section if fb < p*, 
A < 0, and compact if p >, p*, A > 0. 

Some tests [14] indicate that at high pressures compact sands become still more com- 

pact during shear (i.e., dilate with the same sign as the mellow sands), hence it should 
be considered that p* depends slightly on p (it is not excluded that this is associated 

with the effect of granulation of the particles). The quantities A and ‘p in the model 
are given as functions of one argument, hence the dependence rp (A: can be sought. In- 

deed, the angie q is smaller in mellow sands, and greater in compact sands [G, 9, 12, 

133. 

3. Plrltic potsntirl. Now, let us find a potential function \f” (Crij) such that 

deij = (~‘I? / doij) dh (3.1) 

It can be shown that the governing relations (2.4) correspond to the following form of 
the potential surfaces 

lp (Q) = (T2 - (h sin 9) p2 - 2c (A cos cp) p) = const (3.2) 

Let us represent the potential surfaces in the stress space pi? and let us determine 
the constant in the equipotential equation from the condition of its intersection with the 
Mohr-Coulomb line at the point (T,, pO). We obtain 

T” - (A sin(p) (JJ + fi)’ = TO (p. -!- H) (sinrp - ;\I (3.3) 

Let sin9 > h > 0,then (3.3) turns out to be the equation of a hyperbola, whose asym- 
ptote has a slope l/A sincp to the pressure axis p less than the Mohr-Coulomb line. 

In a particular case (if only it is possible) A = sin q, the hyperbola (3.3) degenerates 
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into a line which hence coincides with the Mohr-Coulomb line. In other words, for 
A = sin ‘p the equipotential Y = const itself turns out to be the flow surface aa = coust, 
i. e. the vector of the strain increments is normal to the flow surface. Therefore, this 
particular case corresponds to application of the associative law to the flow function, as 

has beeen recommended in [15]. However, it has been disclosed in tests that the dila- 
tancy velocity is not only much less than the value A = sin 9, but can also be a nega- 

tive quantity. Moreover, for A = sin g, the dissipation W is determined only by cohesion 

of the medium (see Sect. 6 [ 151 and also [ 163). and for c = 0 (an ideal granular medium) 

it turns out that W = 0 also. The unreality of the absence of dissipation in a medium 

with dry friction is often an argument against the application of the associative law in 

any form. In fact, the remark made refers to the application of the associative law to 
the flow surface itself. 

If A < 0, then Eq. (3.5) turns out to be the equation of an ellipse. For h = 0 we 

obtain that the equipotential surface becomes a line parallel to the pressure axis. 
The cases considered above, corresponding to mellowing (h > 0) and compaction 

(h < O),as well as the case of the critical state of 
b 

T 
incompressibility A = Q are presented in Fig. 1, where 

/ ‘c / the variable angle of friction cp has also been taken 
/ 

P 

” .‘+-- 

into account. The plastic states therefore fill the angle 

’ L7 \ 
, 1 UOC or bOc, where displacement of the flow surface 

/r IA</7 from the initial ~0 (or b0) to the critical CO occurs 

D /7 l /I during the development of strains. The critical surface 

Fig. 1. 
CO can also be considered a failure surface. 

Apparently not all states of the medium from the 
angle aOc can be realized, particularly because of the possible instability of the strain 

process. This remark refers, firstly, to strain with deconsolidation of the medium for an 

accompanying reduction in the angle of friction. It is essential that the cylindrical sam- 

ples of compact sand fail under axial compression, along some narrow zones (the slip 

surfaces) while the samples of mellow sand fail by taking on barrel-shaped form. 

let us also note that real granular materials are crushed in the high pressure domain 
to which a break in the Mohr-Coulomb line and a change in the effective angles of 

friction, cohesion, and dilatancy correspond [ 171. 
The governing relations (2.4) (or in the form (3.1). (3.2))close the system of motion 

and continuity equations, in combination with the flow condition (2.1) and the harden- 
ing laws. The traditional addition of elastic strains result in a comparatively slight 
change in the strains in the plastic states sector, but the rigid domain adjoining the hydro- 

static compression axis is replaced by the elastic strain domain. Correspondingly, it 
turns out that hydrostatic compression should be elastic. 

The fundamental models proposed earlier can provisionally be separated into four 
kinds. In the first kind are models [18, 191 according to which the volume and shear 

irreversible strains are developed kinematically independently. where the volume strain 
(density) is a function of the pressure (the loading and unloading branches are distinct). 
The governing relations for the shear strains are given either as in deformation plasticity 

theory’ [lS], or from the condition of similarity of the tensors, the stress deviators and 
the strain rates [19]. This latter modification corresponds to applying the associative 
law to equipotentials parallel to the p axis in the pT plane, i.e., which are not 
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coincident with the Mohr-Coulomb line. 

It is seen from test results that under purely hydrostatic compression samples of gran- 

ular medium remain primarily elastic down to pressures at which mass crushing of the 

grains (sand) occurs, PO], i.e., the irreversible part of the strain is one-third or one- 
half of its elastic part under primary loading. This deduction was confirmed by tests of 
L.S. Kozachenko in the IFZ Akad. Nauk SSSR. If the compression is performed for un- 

equal principal stresses, the irreversible changes in volume become quite large @O-22], 
where the relation between p and p turns out to be ambiguous even during loading. For 
example, it depends on the ratio between the pricipal stresses, and diminution in the 

consolidation occurs for high ratios even as p grows 1223. On the other hand, at very 

high hydrostatic compressions when crushing is quite substantial D4], the preeminent 
dependence of the irreversible volume strains on the pressure itself is indisputable. 

In the second kind are models utilizing application of the associative law to the flow 

function 115, 231. The medium turns out to be rigid (or elastic) under hydrostatic com- 
pression, and to become mellow without limit A = sin 9 under shear. To take account 

of the consolidation of the medium observable in tests, as well as the hardening effects, 

generalized models @4 - 271 have been proposed which closed flow surfaces (in the space 
of principal stresses) have been introduced. 

Models of the second kind take account of dilatancy effects, but for states correspon- 

ding to the lateral part of the flow surface (the line T = p sin ‘p on the pT; plane), these 

models predict only mellowing, where it is too intensive (in tests A < sm cp). In this 
connection, let us also note p8] where it is asserted that a direct experiment does not 
verify the orthogonality of deij to CD, = 0 for soils. Furthermore, sand remains elastic 

down to achievement of the Coulomb line in the L. S, Kozachenko tests (the loading 

path is along the p axis to the point PA? then along the line PA= con& on the PT plane). 
This latter means that there cannot be a closed flow surface for which the “bottom” 

passes to the left of the line PA := const. 

Plastic strain models (the third kind) are also possible, which utilize the conception 

of the associative flow law, but are based on experimental measurements of the plastic 

equipotentials. The paper [29] in which strain increments for states of stress correspon- 
ding to points under the Mohr-Coulomb line were measured, was a contribution to this 
aspect. The elastic part was separated out of the total increments, and then the equi - 
potentials Y = const were constructed by means of the vector of the plastic strain incre- 
ments. The shape of these lines was almost elliptical, but they intersected the Mohr- 
Coulomb line. However, it is essential that the absolute value of the vector degj at 

points on the Mohr-Coulomb line be considerably greater than at points below it c29.301. 
Finally, let us note the constructions in [6, 311 (models of the fourth kind), in which 

it is proposed to consider the irreversible volume strain to be additive: from the part due 
to the rise in hydrostatic pressure and the part associated with the shear. The associative 
law applied to the surface Q0 = 0, was used in 1311 for the dilatancy component, and the 
rate of dilatancy in [6] was considered an independent parameter. It is to be hoped that 
such models will turn out to be useful in taking account of the effects of both crushing 
and repacking of the particles of the medium. 

It should be emphasised that checking of the homogeneous strain of the samples was 
not accomplished by far in all the experiments. Hence, further tests (such as are descr- 

ibed in [12]) can insert additional corrections in the construction and selection of 
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adequate mathematical models. 

4. Problem of deformrtfon of I, layer. Letusconsider the deformation 
of a layer of thickness h during which the components of the displacement velocity 

along the axes 1, 2 are distributed as follows: 

(4.1) 
where u, v are some constants (the maximum velocities along the horizontal and 
vertical). The dilatancy condition (2.2) results in the dependence 

The following homogeneous state of stress corresponds to the velocity distribution (4.1) 
if C SO 

1 1fAsincp U 1 
% = -2h’sincp 1/i--11”=’ $1. = - 2h’ 

i-Ansincp u 

sin cp 1/1--Aa-2h 
1 u (4.3) 

51a --- - 2h’ 2h 

If the specific stress resultants P = - oza and Q = $9 are measured on the boundaries 

52 = 5 h then the following relation between them exists 

Q=KP, ~ K = VI -A2(1 - hsinrp)-lsing, (‘Q9 

There is a tendency to produce such a flow in shear i~~uments [l;Z’J. The traditional 
elementary interpretation of the quantity K as the coefficient of internal friction(K = 

= tg cPb) hence results in a deduction on the variability of qb (even for a constant true 
angle cp = const).It is curious that the dependence (4.4) even indicates the existence 
of some peak value of cPa (Fig. 2, where ‘p = 30”, and the dashes correspond apparently 

ionship (3.1). 

Fig, 2. 

n>O *i.e., for p > p., as is charact- 

eristic for shear tests in compact sand [12 - 

141. Therefore, data on the coefficeint 
(angle) of friction obtained even in the case 

of the simplest plane, laminar flow cannot 

be referred directly to the true angle of 
friction 9 which enters in the limit relat- 

When the loading paths Q (t), U(t) are given in order to find the corresponding strains 

it is necessary first to differentiate condition (4.4), where if h = h (p / p*) and cp = 

= Q, (p / ph), then K = fi (e), hence we obtain 

to unreal values of A) for the domain 

dQ = KdP = PK,‘de (4.5) 
On the other hand, the relation 

(4.6) 

follows from (4.3) for the increment & in the volume strain. Substitution of the reia- 
timship (4.6) into (4.5) permits expression of the increment dh in terms of the loading 
increments dQ and dP. 
Now, the increment in the shear strains 
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dr,, = 1/S v’l - h2 (AK,‘)-1 (dQ - K dP) P-’ (4.7) 
can be computed by means of the expressions (4.3), which completes the computation. 
The condition # - KdP = 0 corresponds to neutral loading, and the condition 

dQ - KdP < 0 to unloading. In these cases the plastic strain increments equal zero. 

let us note that simultaneous determination of K and A in test data permits finding 

the empirical relation between h (P) 1 cp (P) 
6. Hypothaticrl clorure relrtlonthfpe, Although the dependences A (p) 

and cp (p) should be sought by processing test results, certain hypothetical models perm- 
itting the calculation of these characteristic relations for special kinds of granular media 
by means of the known values of the angle of friction between the particles, and other 

microstructure parameters, can also be proposed. Methods of the mechanics of a conti- 

nuum with microstructure using the concept of vector-directors and slip lines [32] appa- 
rently turn out to be most fruitful in this area. 

Fig. 3 Fig. 4 

let us consider a cell consisting of four touching surfaces (Fig. 3). Idealizing the real 
picture, we assume these particles to be spherical in shape and of the same radius. The 
condition that the spacings between the centers of the touching particles remain constant 

is characteristic for the deformation of the cell (if small elastic strains are excluded from 

the analysis, see [33]). In other words, the relative displacements of the centers of the 

spheres should be orthogonal to lines connecting them. If a continuum description of the 

strain is now introduced, then the mentioned condition indicates the presence of the 
vector-directors g(r), &2) similar to those introduced earlier by Ericksen and Truesdell 
[34]. The condition of absence of relative displacements of points in the direction of 

the vector-directors reduces to the following (see (I. 3)): 

2 Fij@)@) = 0, c1 z 1,2 (5.1) 

i. i 

Condition (5.1) can be transformed [32] to the kinematic interrelation between the vol- 
ume e and the shear y strain rates 

E II - Ay’sgn y, A = CQS 26 (5.2) 

where 26 is the angle between the vectors I$r), g(2) (Fig. 4). The dependence between 
the dilatancy rate h and the angle 6 in (5.2) is easily converted into a dependence on 

the volume strain (density) of the cell. 
The stress resultants on the contacts are connected by the law (1.1) for a relative 

slippage of the spheres, where a pro~rtiona~~ between the mean pressure and the in- 
tensity of the shear stresses acting on the cell corresponds to it [32]. It is essential 
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that the proprtionality coefficient (the effective coefficient of internal friction of the 
medium as a whole) depend on the volume strain (density) of the medium since the angle 

b varies during deformation, as do also the projections of the dry friction forces on the 
principal axes of the stress tensor C32], 

The coefficient of internal friction can even become infinite (the arching or wedging 

effect), which Orowan [353 noted for spheres. Let us also note that relative displacem- 
ents of the particles occur along families of lines (slip), mutually orthogonal to the vec- 
tor-directors which interseet at the angle 29 = II - 26. 

Consideration of the deformation of an individual cell permits illustration of the con- 

dition (2.2) (cf condition (5.2)) as well as the nature of the hardening of a granular 
medium. However, to obtain quantitative relations it is necessary to examine the stat- 
istics of the distribution of such cells by assuming even the presence of their superstruc- 
ture. Taking account of anisotropy is hence essential. 

It is considerably simpler to seek the closure relations by introducing just one velocity 
field in the neighborhood of the macropoint, but meanwhile utilizing reasoning based 
on the micropicture of the deformation process. 

Such a path is not new in the mechanics of granular media. The most complete papers 

of this kind are [16, 36, 3’71 whose authors requirement that the characteristics of the 

velocity field along which velocity discontinuities are possible, should certainly coincide 
with lines on which the Coulomb law (1.1) is satisfied. These latter turn out to be char- 

acteristics of the stress field if R = T,, N = u, [38], where ‘t,,, u, are the shear and 
normal components of the stresses on this line (n is the subscript for its normal). Since 

the particular case of an incompressible medium is examined in [16, 36, 371. the two 

mentioned families of characteristics may not coincide when the stress tensors and vel- 
ocities are coaxial. The requirements of coaxiality and the requirement for relative 
rotation of the principal axes of thestress tensors (so that at least one pair of velocity 
and stress characteristics would coincide) are hence rejected. 

Rejection of coaxiality in the case of an isotropic medium is not acceptable for many 
reasons. Firstly, the slip lines along which the law (1.1) should be satisfied, is a line of 
strong tangential discontinuity in the velocity, i. e. the shear strain velocity along it 
becomes infinite, and the concept of the strain rate tensor thereby becomes meaningless 
at this point. Hence, at points where the ultimate equilibrium conditions of a continuum 

are satisfied but there are no strong discontinuities, it is not necessary to require coinci- 
dence of the lines along which the law (1.1) is satisfied with the velocity field charac- 

teristics; it is thereby not necessary to reject the mentioned coaxiality condition. 
Secondly. in an isotropic medium the maximum dissipation power of the mechanical 

work W corresponds to the coaxiality condition. Let us first assume that the principal 

axes of the mentioned tensor in an element ( a square with side 2l) of the medium (Fig.4) 
do not coincide (the principal values are uIr $, Ed, eZ), respectively). Utilizing the rep- 
resentation (1.3) we find 

W = 2arAu, + 2uzAua = (et + uZ) (E, + e.J 1 + (aI - e2) (er - ep) 2 cos 26 (5.3) 

from which it follows that the maximum of W is achieved for fi = 0. Finally, special 
tests [12] verify that the increments in the plastic strains are coaxial to the stresses. 

In passing, let us note that upon compliance with the relations (2.4) the expression 
(5.3) can be represented as 
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IV = (01 - aa) (el - es) (1 - A / sin cp) + 2c A (el - e4) ctg ‘p, 1=1 

and for A = sin-q, c = 0, i.e., for the form [15] of the associative law W E 0. 
Constructing a hypothetical picture of the strain under conditions of Coulomb frictional 

force action, let us start from the fact that we find the analog of the slip lines and the 

analog of the vector-directors in a mean velocity field. 
The existence of a Mohr circle (Fig. 5) for the tensor 

eij follows from the relationship (1.3) which can also be 
expressed in terms of the relative velocities 

% ura + (&a - l/s (a1 + es)1)2 = (V2 (el - e2)Z)2 

where u,, U+ are the velocity components of particles 

separated by I from the point Zj, along 1 and perpend- 
icular to it. Because of condition (2.2) which has the form 

(el + e2) = AleI - es1 in the principal strains er , 
Fig. 5. es, the circle (5.4) intersects the axis u,= 0. Hence, 

two directions exist (forming the angles (*) +- 6; h = - 
.= cos 26 with the Us, e2 axes). on which the spacing between the particles does not 

change. These directions coincide with the velocity field characteristics; its prototype 

is the vector-director. The analogs of the directions along which the microslip of the 

particles on the velocity characteristics seems to occur are the directions u+, i. e., the 
fanily of the slip lines’[9] mutually orthogonal to the velocity field characteristics. 

Along precisely these does the purely tangential relative particle displacement occur. 
These slip lines merge with the velocity field characteristics only for h --f O.The line 

of strong tangential discontinuity in the velocity is the boundary for domains of contin- 
uous plastic strain, and the conditions thereon are boundary conditions. 

That state of a continuum when the Coulomb dry friction law (1.1) is realized on the 
ultimate equilibrium area, but between the force components R, b' directed at the 

angle p and fi + ?I 12 , respectively, has been examined earlier [39, 401. In this 

case the effective angle of friction is cp = 6 + p. 
Now, if it is assumed that the direction of the force R is collinear with the slip line, 

we then obtain [9] a relation between the instantaneous angle of friction ‘p of the conti- 
nuum, the dilatancy velocity A and the angle of friction 6 between the particles 

rp = 26 + arc sin A (5.5) 

This relationship approximates well the relation suggested in [13] on the basis of energy 
considerations. To find the relation between the dilatancy velocity A and the density 
p of the medium. let us first differentiate the expression h = cos 26 with respect to 

time. We then find the rate of change of the angle 

db i 1 dA 

dt= 
-- 

2 1/m-_ (5.6) 

Now the hypothesis that the relative velocity of particles on the characteristic agrees 
with the velocity of displacement of the characteristic itself (this condition is satisfied 
strongly for the true vector-directors frozen in the medium; on the other hand, the 

(*) The quantity v = n//z.-- 26is called the dilatancy angle [12]. 
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assumption of their presence contradicts the condition of invariant isotropy of the medium) 

4 (6) = l/a (er -QZsin26= Z(&/dt) (5.7) 
results in the relationship 

(a, - es) f1 - A2 = (V/1 - As)-t dh / dt (54 

This latter can be represented as 

edt = --p-‘ci$ = --(I -; h2) A dh (5.9) 

Integrating (5.9) results in the relations (Fig. 6, where curves of the change in sample 
density under shear are presented) 

h=--l/l-_(Pl~*)2, dA>O for A<0 

A = 1/i - (P* / p)2, dA<O for A>0 
(5.10) 

The hypothetical relationships (5.5) and (5.9) close the rigidly plastic hardening model 
of a granular medium presented above. They are useful as approximations although they 

certainly cannot replace the functions A (p), ‘p (p) for real materials. In particular, it is 

R9Ov I I I 

Fig. 6. 

essential that the derivative dT / dA = (1 - A2)-‘/~ does not vanish as A -f 0 but this 

does not assure a smooth passage to the limit of the hardening plastic model to the model 
of an incompressible (A = 0) flow without hardening, which corresponds to the critical 

state (failure) of a medium. 
The author is grateful to L. I. Sedov and A, A. Vakulenko for discussing the research, 

and to N, M. Syrnikov for performing the computations. 
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